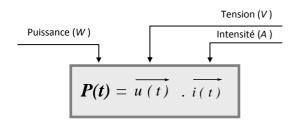
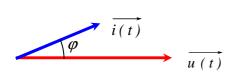
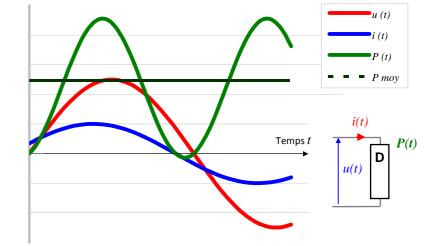

ENERGETIQUE

Calcul de puissances électriques Formules générales 6

1 - RAPPELS


La puissance est la quantité d'énergie par unité de temps fournie par un système à un autre.


Unité légale : le watt (W) avec : $\mathbf{1} W = \mathbf{1} J. s^{-1}$. Autres unités : le cheval vapeur $Cv : \mathbf{1} Cv = 736 W$.

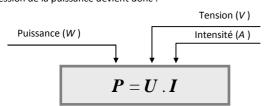


2 – EXPRESSION GÉNÉRALE DE LA PUISSANCE ÉLECTRIQUE

Soit un dipôle \boxed{D} traversé par un courant d'intensité $\cfrac{i(t)}{i(t)}$ et soumis à la tension $\cfrac{u(t)}{i(t)}$. Avec la convention « récepteur » (voir figure ci-dessous). On montre que la $\cfrac{D}{i(t)}$ puissance instantanée $\cfrac{P(t)}{I(t)}$ puissance instantanée $\cfrac{P(t)}{I(t)}$ et soumis à la tension $\cfrac{U(t)}{I(t)}$.

La puissance est une grandeur algébrique dont le signe dépend de la convention choisie. Avec la convention « récepteur », le comportement du dipôle est le suivant :

- \bullet si $P(t) = \overline{u(t)}$. i(t) > 0; alors le dipôle reçoit la puissance (récepteur)
- \bullet si $P(t) = \overrightarrow{u(t)}$. $\overrightarrow{i(t)} < 0$; alors le dipôle fournit la puissance (générateur).


La puissance se mesure avec un Wattmètre. Cet appareil mesure en fait à la fois la tension et le courant pour en déduire la puissance.

3 - VALEUR MOYENNE

Lorsque la puissance est fluctuante, on considère la valeur moyenne de P(t) notée $P = \langle P(t) \rangle$

Si la tension et le courant sont continus alors $u(t) = m{U}$ $i(t) = m{I}$ L'expression de la puissance devient donc :

* Régime variable

(Voir fiches suivantes).

